

Team 18: The Centennial Calendar

Design Review 5

Team Introduction

Zachary W. Brower Team Leader

Jacob W. Williams

Lead ESE

Alyna B. Segura-Sanchez Lead ME

Michael S. Patrick Financial Lead

Alyna Segura-Sanchez

PROJECT OVERVIEW

Overview

- ➤ Project Summary
 - Create a calendar that runs continuously for 100 years
 - Must utilize all-mechanical workings
 - No electrical input power
 - Annual maintenance allowed

Alyna Segura-Sanchez

Overview

➤ Project Scope

- Create an operational 100-year mechanical calendar prototype out of inexpensive materials that accounts for the day, month and year, with annual maintenance.
- The prototype developed is to simulate proper date keeping and will be utilized by future senior design teams to improve upon.

Overview

➤ Customer Needs

- Mechanism powered mechanically.
- Mechanism accounts for leap years and nonleap years.
- Internal workings visible from a distance.
- Usage of cost-effective materials while not sacrificing quality.
- Compact mechanism that is self-sufficient for a year at a time.

Target Catalog

Table 1: Target Metrics

<u>Metric</u>	<u>Measure</u>	<u>Target</u>
Max allowable error	Time	1 day/year
Life span of mechanism	Time	100 years
Weather-proof rating	Durability	IP-55
Maintenance interval	Reproducibility	Annual
Max mechanism size	Dimensions	Door way
Furthest distance the date is legible	Visibility	3 meters
Organized design	Aesthetics	N/A
Amount of movements per day	Quantity	1
Tamper-proof rating	Durability	TL-40

Alyna Segura-Sanchez

Alyna Segura-Sanchez

OUR PROTOTYPE

Date Display

Now utilizing the Clayton Boyer Perpetual Calendar as the core of the display

➤ Added an extra gear to track the years

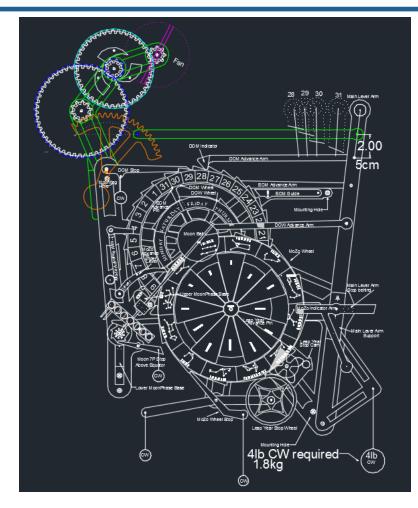


Figure 1: Clayton Boyer Perpetual Calendar AutoCAD drawing

Alyna Segura-Sanchez

Display Drawings

- Bought calendar drawing file
 - Not 3D
 - One page of drawings
 - Not all lines connected
- Prepared drawings for cutting
 - Placed same thickness on individual pages
 - Removed unnecessary labels

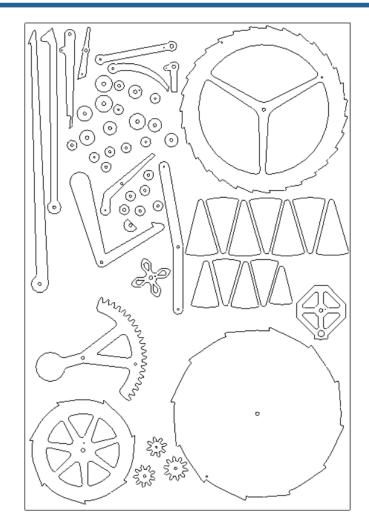


Figure 2: 3/8 in CAD drawings

Display Material

- ➤ Material choices
 - Wood
 - Acrylic
 - Stainless Steel
 - Polycarbonate
- ➤ Why Polycarbonate?
 - Light
 - Weather resistant
 - Shatter resistant

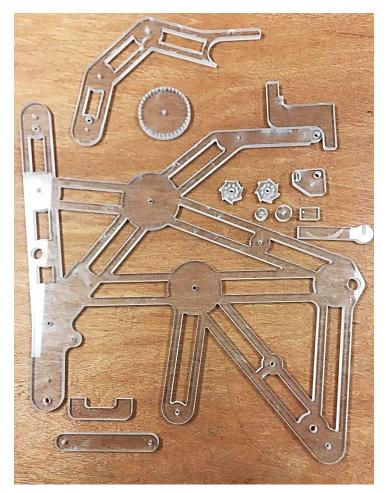


Figure 3: 3/4 in water jetted parts

Alyna Segura-Sanchez

Manufacturing Display Parts

- Considered multiple options
 - 3D printing
 - Laser cutting
 - Water jetting
- >3D printing required extruding
- > Laser cutter not strong enough
- ➤ Decided on waterjet

Cutting Display Parts

- Water jetting
 - Looked at Engineering waterjet (too small)
 - Ended up using HPMI waterjet
- Water jetting of the display should finish by the end of the day
- Assembly of the display should finish by the end of the following week

Figure 4: HPMI waterjet

Jacob Williams

Display-Clock Connection

➤ Whitworth quick return

Connects clock to main lever of display

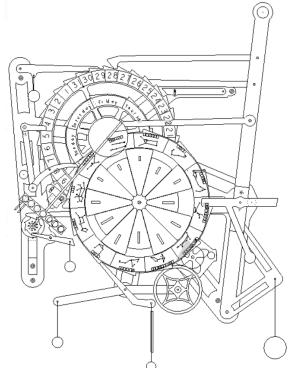


Figure 5: Calendar drawing

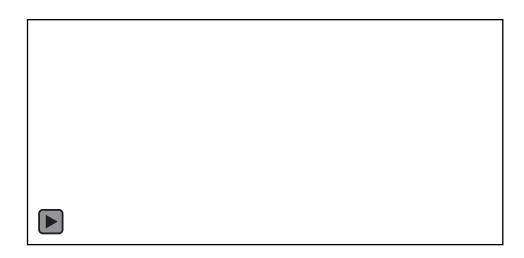


Figure 6: Whitworth quick return example

The Clock

- ➤ 1952 Kundo All-Mechanical, Torsional Pendulum Clock
- >400 day run time
- >Simple, yet elegant
- ➤ Easy rewinding mechanism

Figure 7: Kundo All-Mechanical Torsional Pendulum Clock

Jacob Williams

Energy System

Bellows modeled after those found on an Atmos clock

- Slight changes in temperature and pressure cause ethyl chloride gas to expand
- Utilizes most consistent environmental changes

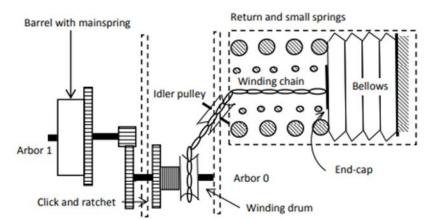


Figure 8: Atmos bellows

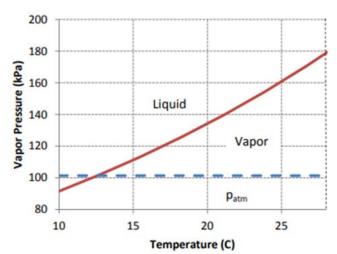


Figure 9: P-T graph of ethyl chloride

Bellows Motion

- Winding drum picks up slack when bellows expands
- ➤ When the bellows contracts, it pulls the winding chain and winds the mainspring through a click and ratchet system
- ➤ Atmos clock in Tallahassee will produce at least 36.1 days of power on average

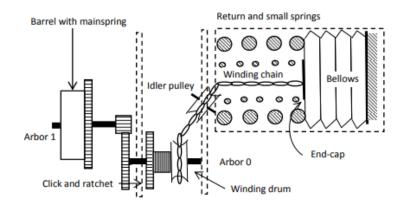


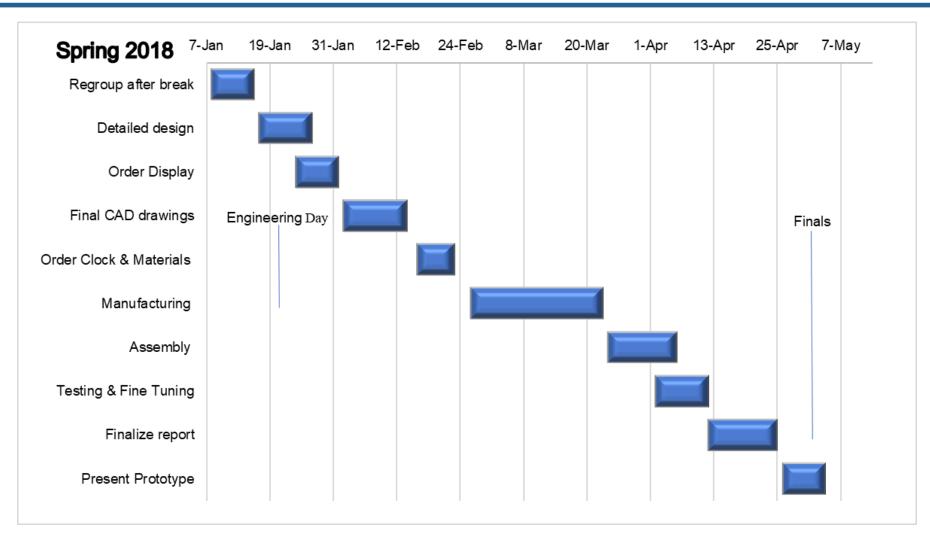
Figure 10: Atmos winding system

Jacob Williams

Bellows Test

- ➤ Analysis of Bellows will occur before implementation into the final prototype
- Maximum height differences will be compared throughout the day

Figure 11: Atmos bellows expanded (back) and contracted (front)


Jacob Williams

Next Steps

- ➤ Attach a stepper motor to the prototype to run at an accelerated rate.
 - Allows sponsors and following groups to see the flaws in our system.
- ➤ Design and manufacture an encasement able to withstand the Florida climate.
- Decrease overall size
- Increase aesthetic appeal

Gantt Chart

Jacob Williams

Figure 12: Gantt Chart

References

- User, A. J. (2013, October 18). I found this helpful answer from a clock repair expert on JustAnswer.com. Retrieved November 08, 2017, from https://www.justanswer.com/clock-repair/8295n-just-acquired-atmos-clock-leveled-released.html
- Bimetallic strip. (2017, November 02). Retrieved November 02, 2017, from https://en.wikipedia.org/wiki/Bimetallic_strip
- Putnam, C. S. (2016, February 20). The Mechanical Battery. Retrieved November 02, 2017, from https://www.damninteresting.com/the-mechanical-battery/
- The Shifting-Mass Overbalanced Wheel. (n.d.). Retrieved November 02, 2017, from https://www.lhup.edu/~dsimanek/museum/overbal.htm
- The Shifting-Mass Overbalanced Wheel. (n.d.). Retrieved November 02, 2017, from https://www.lhup.edu/~dsimanek/museum/overbal.htm
- Sandru, O. (2015, August 26). Fan Case Free Energy Magnet Motors: How They Fake Them. Retrieved November 02, 2017, from https://www.greenoptimistic.com/fan-magnet-motors-fake/#.WfuxmWhSxPY

Thank you for your time.

ANY QUESTIONS?

BACKUP SLIDES

Bellows Motion

- Pressure of ethyl chloride in the bellows creates a force, $f_b = a_b p_b$
- > Two springs oppose bellow's force to recompress it, $f_s = k_s x$
- Winding drum picks up slack when bellows expands
- ➤ When the bellows contracts, it pulls the winding chain and winds the mainspring through a click and ratchet system

- > Pressure of ethyl chloride in the bellows creates a force, $f_b = a_b p_b$
- > Two springs oppose bellow's force to recompress it, $f_s = k_s x$
- Winding drum picks up slack when bellows expands
- When the bellows contracts, it pulls the winding chain and winds the mainspring through a click and ratchet system

Figure 9: Atmos winding system

Energy System (cont.)

> Temperature changes

- The bellows on an Atmos clock generate about 4 days of power per °C
- Minimum temperature change in Tallahassee on average is 15 °F (~8.34 °C)
- Atmos clock in Tallahassee will produce at least 36.1 days of power on average

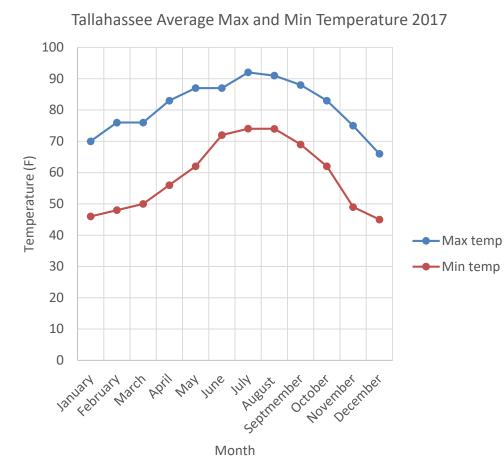
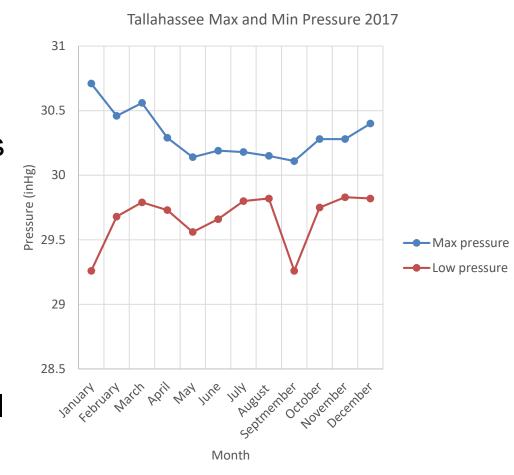


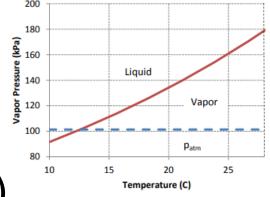
Figure 5: Temperature fluctuations per month in Tallahassee

Michael Patrick

Energy System (cont.)

- Air temperature vs. atmospheric pressure power contribution
 - 37 mmHg (1.46 inHg) is a comparable to a temperature change of 1 degree C
 - Max average pressure change = 1.45 inHg, min average pressure change = 0.33 inHg
 - Pressure differential will power Atmos clock between 4.33 and 0.953




Figure 6: Pressure fluctuations per month in Tallahassee

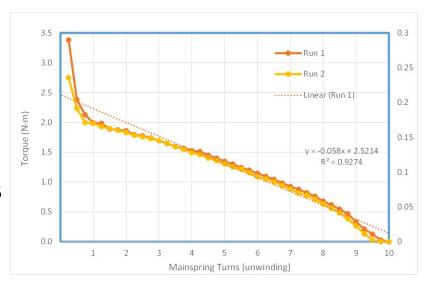
Michael Patrick

Ethyl Chloride Gas

- ➤ At room temp. and atmospheric pressure, ethyl chloride is a vapor
- ➤ Bellows is at min. volume at vapor/liquid point (boiling point)
- Most of the gas is a vapor at atmospheric pressure, so the increase in pressure may follow the ideal gas law, PV = nRT

Pressure-temperature graph of ethyl chloride

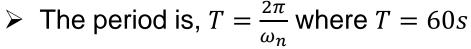
Mainspring

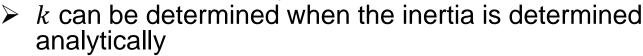

- Mainspring stores energy produced by bellows to drive the clock and the display
- Prive torque expressed as: $\tau = \frac{Eb_{ms}h_{ms}^3(\theta-\theta_0)}{12L} + \tau_0 \text{ where }$ E = modulus of elasticity, $b_{ms} = \text{mainspring width,}$ $h_{ms} = \text{mainspring thickness,}$ L = spring length
- $\succ \tau_0 = Fd = (ma)d$
- \triangleright Determine τ_0 by torqueing the mainspring

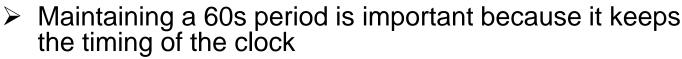
Mainspring example

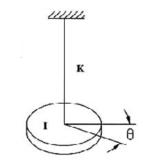
Mainspring Torque Calculation

- $\succ \tau_0 = Fd = (ma)d$
- Make a jig comprised of a clamp to hold the mainspring
- Attach rod to mainspring
- Fully load mainspring
- Measure distance that a mass holds rod in the equilibrium position (horizontal)
- Plot torque for every 360 degree unwinding


Mainspring torque


Clock Motion


- Use gear ratios to determine how long the clock can run
- \triangleright Gear ratio, $R = \frac{N_{out}}{N_{in}}$
- > In, out denotes input and output motions
- Need number of teeth for each gear in the gear train
- Determine how long the great wheel takes for a full rotation
- runtime = time to turn great wheel one rev *
 number of revs to fully wind mainspring


Torsional Pendulum

- The time base of the clock regulated by simple harmonic motion
- > The natural frequency is expressed by, $\omega_n = \sqrt{\frac{k}{I}}$ where $I = mr^2$

Torsional pendulum

Energy Analysis

- Power consumption
 - Determine the average torque produced

•
$$W = \tau \theta = \tau_{mean} \frac{2\pi}{rev}$$

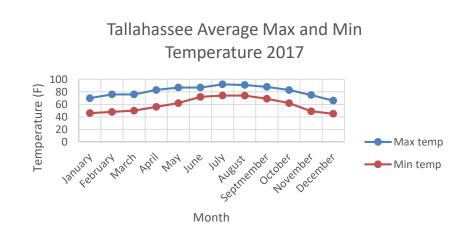
•
$$Power = \frac{W}{t}$$

$$P = \frac{W}{(time\ to\ turn\ great\ wheel\ 1\ rev)}$$

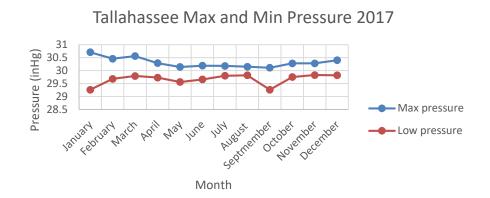
- For reference, an Atmos clock's average rate of power consumption is about $0.0327 \ \mu W$
- Losses due to pendulum, gear train, and escapement

- Temperature changes enough to power clock?
 - From Atmos experiment:
 - At room temperature, the bellows moved 1.63 mm/C (0.036 in/F) on average
 - Circumference of chain winder is 34 mm

55:18 gear ratio from chain winder to mainspring


For Atmos, full turn of great wheel takes 29.5 days

- Temperature changes enough to power clock?
 - From Atmos experiment:
 - At room temperature, the bellows moved 1.63 mm/C (0.036 in/F) on average
 - Circumference of chain winder is 34 mm


55:18 gear ratio from chain winder to mainspring

For Atmos, full turn of great wheel takes 29.5 days

- Temperature changes (cont.)
 - The bellows on an Atmos clock generates 4.33 days of power per degree C
 - Minimum temperature change in Tallahassee on average is 15 degrees F (~8.34 degrees C)
 - Therefore, an Atmos clock in Tallahassee will produce at least 36.1 days of power on average

- Air temperature vs. atmospheric pressure power contribution
 - 37 mmHg is a comparable to a temperature change of 1 degree C
 - 37 mmHg = 1.46 inHg
 - Maximum average pressure change in Tallahassee is 1.45 inHg
 - Minimum average pressure change is 0.33 inHg
 - At best, pressure differential will power Atmos clock for 4.33 days
 - At worst, pressure differential will power Atmos clock for 0.953 days

- Average temperature differential yearly = 21.5 degrees F = 12.0 degrees C
- > Average pressure differential yearly = 2.64 in Hg
- $\geq \left(\frac{4.33 \, days}{^{\circ}C}\right) (12.0 \, ^{\circ}C) = 51.96 \, days \, of \, power$
- $> \left(\frac{1.46 \, inHg}{^{\circ}C}\right) \left(\frac{^{\circ}C}{4.33 \, days}\right) \left(\frac{1}{2.64 \, inHg}\right) = 0.1277 \, days \, of \, power$
- Pressure differential only constitutes 0.25% of power supplied
- Note: as long as power supplied per month exceeds the length of the month, power will not run out