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Overview
Project Summary
 Create a calendar that runs continuously for 

100 years
• Must utilize all-mechanical workings
• No electrical input power
• Annual maintenance allowed 

Alyna Segura-Sanchez
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Overview
Project Scope
 Create an operational 100-year mechanical 

calendar prototype out of inexpensive 
materials that accounts for the day, month and 
year, with annual maintenance.

 The prototype developed is to simulate proper 
date keeping and will be utilized by future 
senior design teams to improve upon. 

Alyna Segura-Sanchez
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Overview
Customer Needs
 Mechanism powered mechanically.
 Mechanism accounts for leap years and non-

leap years.
 Internal workings visible from a distance.
 Usage of cost-effective materials while not 

sacrificing quality.
 Compact mechanism that is self-sufficient for 

a year at a time.

Alyna Segura-Sanchez
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Target Catalog
Metric Measure Target

Max allowable error Time 1 day/year

Life span of mechanism Time 100 years

Weather-proof rating Durability IP-55

Maintenance interval Reproducibility Annual

Max mechanism size Dimensions Door way

Furthest distance the date is 
legible Visibility 3 meters

Organized design Aesthetics N/A

Amount of movements per day Quantity 1

Tamper-proof rating Durability TL-40

Table 1: Target Metrics

Alyna Segura-Sanchez
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OUR PROTOTYPE
Alyna Segura-Sanchez
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Date Display
Now utilizing the 

Clayton Boyer 
Perpetual Calendar as 
the core of the display

Added an extra gear to 
track the years

Figure 1: Clayton Boyer Perpetual 
Calendar AutoCAD drawingAlyna Segura-Sanchez
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Display Drawings
 Bought calendar 

drawing file
 Not 3D
 One page of drawings
 Not all lines connected

 Prepared drawings for 
cutting
 Placed same thickness 

on individual pages
 Removed unnecessary 

labels
Figure 2: 3/8 in CAD drawings

Alyna Segura-Sanchez
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Display Material
Material choices
 Wood
 Acrylic
 Stainless Steel
 Polycarbonate

Why Polycarbonate?
 Light
 Weather resistant
 Shatter resistant

Figure 3: 3/4 in water jetted parts
Alyna Segura-Sanchez
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Manufacturing Display Parts
Considered multiple options
 3D printing
 Laser cutting
 Water jetting

3D printing required extruding
Laser cutter not strong enough
Decided on waterjet

Alyna Segura-Sanchez
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Cutting Display Parts
Water jetting
 Looked at Engineering 

waterjet (too small)
 Ended up using HPMI 

waterjet
Water jetting of the 

display should finish by 
the end of the day

Assembly of the display 
should finish by the end 
of the following week Figure 4: HPMI waterjet

Jacob Williams
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Display-Clock Connection
Whitworth quick return
Connects clock to main lever of display

Figure 5: Calendar drawing Figure 6: Whitworth quick return example 
Jacob Williams
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The Clock
1952 Kundo All-

Mechanical, 
Torsional Pendulum 
Clock
400 day run time
Simple, yet elegant
Easy rewinding 

mechanism
Figure 7: Kundo All-Mechanical 

Torsional Pendulum ClockJacob Williams
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Energy System
Bellows modeled after 

those found on an 
Atmos clock

Slight changes in 
temperature and 
pressure cause ethyl 
chloride gas to expand

Utilizes most consistent 
environmental changes

Figure 8: Atmos bellows

Figure 9: P-T graph of ethyl 
chlorideJacob Williams
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Bellows Motion
Winding drum picks up 

slack when bellows 
expands

When the bellows 
contracts, it pulls the 
winding chain and winds 
the mainspring through a 
click and ratchet system

Atmos clock in Tallahassee 
will produce at least 36.1 
days of power on average

Figure 10: Atmos winding 
system

Jacob Williams
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Bellows Test
Analysis of Bellows 

will occur before 
implementation into 
the final prototype
Maximum height 

differences will be 
compared throughout 
the day Figure 11: Atmos bellows expanded 

(back) and contracted (front) 

Jacob Williams
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Next Steps
Attach a stepper motor to the prototype to 

run at an accelerated rate.
 Allows sponsors and following groups to see 

the flaws in our system.
Design and manufacture an encasement 

able to withstand the Florida climate.
Decrease overall size
Increase aesthetic appeal

Jacob Williams
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Gantt Chart

Figure 12: Gantt ChartJacob Williams
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ANY QUESTIONS?
Thank you for your time.
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BACKUP SLIDES
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Bellows Motion
 Pressure of ethyl chloride in 

the bellows creates a force, 
𝑓𝑓𝑏𝑏 = 𝑎𝑎𝑏𝑏𝑝𝑝𝑏𝑏

 Two springs oppose bellow’s 
force to recompress it, 𝑓𝑓𝑠𝑠 =
𝑘𝑘𝑠𝑠𝑥𝑥

Winding drum picks up slack 
when bellows expands

When the bellows contracts, it 
pulls the winding chain and 
winds the mainspring through 
a click and ratchet system

Figure 9: Atmos winding 
system
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Energy System (cont.)
Temperature changes
 The bellows on an 

Atmos clock generate 
about 4 days of power 
per ℃
 Minimum temperature 

change in Tallahassee 
on average is 15 ℉
(∼8.34 ℃)
 Atmos clock in 

Tallahassee will 
produce at least 36.1 
days of power on 
average
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Michael Patrick
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Energy System (cont.)
 Air temperature vs. 

atmospheric pressure 
power contribution
 37 mmHg (1.46 inHg) is 

a comparable to a 
temperature change of 
1 degree C

 Max average pressure 
change = 1.45 inHg, 
min average pressure 
change = 0.33 inHg

 Pressure differential will 
power Atmos clock 
between 4.33 and 
0.953
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Ethyl Chloride Gas
At room temp. and atmospheric 

pressure, ethyl chloride is a 
vapor
Bellows is at min. volume at 

vapor/liquid point (boiling point)
Most of the gas is a vapor at 

atmospheric pressure, so the 
increase in pressure may follow 
the ideal gas law, 𝑃𝑃𝑃𝑃 = 𝑛𝑛𝑛𝑛𝑛𝑛

Pressure-temperature 
graph of ethyl 
chloride
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Mainspring
Mainspring stores energy 

produced by bellows to drive 
the clock and the display

Drive torque expressed as: 
𝜏𝜏 = 𝐸𝐸𝑏𝑏𝑚𝑚𝑚𝑚ℎ𝑚𝑚𝑚𝑚

3 (𝜃𝜃−𝜃𝜃0)
12𝐿𝐿

+ 𝜏𝜏0 where 
𝐸𝐸=modulus of elasticity, 
𝑏𝑏𝑚𝑚𝑚𝑚=mainspring width, 
ℎ𝑚𝑚𝑚𝑚=mainspring thickness, 
𝐿𝐿=spring length

 𝜏𝜏0 = 𝐹𝐹𝐹𝐹 = 𝑚𝑚𝑚𝑚 𝑑𝑑
Determine 𝜏𝜏0 by torqueing 

the mainspring 

Mainspring example
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Mainspring Torque Calculation

 𝜏𝜏0 = 𝐹𝐹𝐹𝐹 = 𝑚𝑚𝑚𝑚 𝑑𝑑
 Make a jig comprised of a 

clamp to hold the mainspring
 Attach rod to mainspring
 Fully load mainspring
 Measure distance that a mass 

holds rod in the equilibrium 
position (horizontal)

 Plot torque for every 360 
degree unwinding Mainspring torque
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Clock Motion
Use gear ratios to determine how long the clock 

can run

 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑅𝑅 = 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜
𝑁𝑁𝑖𝑖𝑖𝑖

 In, out denotes input and output motions
Need number of teeth for each gear in the gear 

train
Determine how long the great wheel takes for a 

full rotation
 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟 ∗
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
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Torsional Pendulum

 The time base of the clock regulated by simple 
harmonic motion

 The natural frequency is expressed by, 𝜔𝜔𝑛𝑛 = 𝑘𝑘
𝐼𝐼

where 
𝐼𝐼 = 𝑚𝑚𝑟𝑟2

 The period is, 𝑇𝑇 = 2𝜋𝜋
𝜔𝜔𝑛𝑛

where 𝑇𝑇 = 60𝑠𝑠
 𝑘𝑘 can be determined when the inertia is determined 

analytically
 Maintaining a 60s period is important because it keeps 

the timing of the clock

Torsional pendulum
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Energy Analysis
Power consumption
 Determine the average torque produced

 𝑊𝑊 = 𝜏𝜏𝜏𝜏 = 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2𝜋𝜋
𝑟𝑟𝑟𝑟𝑟𝑟

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑊𝑊
𝑡𝑡

 𝑃𝑃 = 𝑊𝑊
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 1 𝑟𝑟𝑟𝑟𝑟𝑟)

 For reference, an Atmos clock’s average rate of 
power consumption is about 0.0327 𝜇𝜇𝜇𝜇
 Losses due to pendulum, gear train, and 

escapement
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Energy Analysis (cont.)
 Temperature changes enough to power clock?
 From Atmos experiment:
 At room temperature, the bellows moved 1.63 mm/C 

(0.036 in/F) on average
 Circumference of chain winder is 34 mm


360°
34𝑚𝑚𝑚𝑚

1.63𝑚𝑚𝑚𝑚
℃

= 17.3°
℃

 55:18 gear ratio from chain winder to mainspring


17.3°
℃

55
18

= 52.9° 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
℃

 For Atmos, full turn of great wheel takes 29.5 days


52.9°
℃

29.5 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
360°

= 4.33 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
℃
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Energy Analysis (cont.)
 Temperature changes enough to power clock?
 From Atmos experiment:
 At room temperature, the bellows moved 1.63 mm/C 

(0.036 in/F) on average
 Circumference of chain winder is 34 mm


360°
34𝑚𝑚𝑚𝑚

1.63𝑚𝑚𝑚𝑚
℃

= 17.3°
℃

 55:18 gear ratio from chain winder to mainspring


17.3°
℃

55
18

= 52.9° 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
℃

 For Atmos, full turn of great wheel takes 29.5 days


52.9°
℃

29.5 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
360°

= 4.33 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
℃
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Energy Analysis (cont.)

 Temperature changes (cont.)
 The bellows on an Atmos 

clock generates 4.33 days 
of power per degree C

 Minimum temperature 
change in Tallahassee on 
average is 15 degrees F 
(∼8.34 degrees C)

 Therefore, an Atmos clock 
in Tallahassee will produce 
at least 36.1 days of power 
on average
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Energy Analysis (cont.)

 Air temperature vs. atmospheric 
pressure power contribution
 37 mmHg is a comparable to a 

temperature change of 1 degree C
 37 mmHg = 1.46 inHg
 Maximum average pressure 

change in Tallahassee is 1.45 
inHg

 Minimum average pressure 
change is 0.33 inHg

 At best, pressure differential will 
power Atmos clock for 4.33 days

 At worst, pressure differential will 
power Atmos clock for 0.953 days
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Energy Analysis (cont.)
 Average temperature differential yearly = 21.5 degrees 

F = 12.0 degrees C
 Average pressure differential yearly = 2.64 inHg


4.33 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

℃
12.0 ℃ = 51.96 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝


1.46 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

℃
℃

4.33 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
1

2.64 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
=

0.1277 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 Pressure differential only constitutes 0.25% of power 

supplied
 Note: as long as power supplied per month exceeds 

the length of the month, power will not run out
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